Marc RaymanSep 05, 2018

Dawn Journal: A Bit of Perspective

Dear Sinceres Readers,

People have been gazing in wonder and appreciation at the beauty of the night sky throughout the history of our species. The gleaming jewels in the seemingly infinite black of space ignite passions and stir myriad thoughts and feelings, from the trivial to the profound. Many people have been inspired to learn more, sometimes even devoting their lives to the pursuit of new knowledge. Since Galileo pointed his telescope up four centuries ago and beheld astonishing new sights, more and more celestial gems have been discovered, making us ever richer.

Cerealia Facula
Cerealia Facula This view of Cerealia Facula was constructed with pictures Dawn took when it swooped as low as 21 miles (34 kilometers). This deposit of reflective salt in Occator Crater is the brightest region on Ceres. (We have seen Cerealia Facula and Occator many times before, most recently in the previous Dawn Journal.) The probe flew so close to the ground that each picture covered only a small area, so multiple orbital passes were required to collect all the high-resolution pictures that were combined to make this image. The isolated bright structure on the left is shown in more detail here, and we refer to it below to provide context for the size of other solar system bodies. Some gaps in the coverage at the time this view was assembled are filled with pictures Dawn took in 2016 from 240 miles (385 kilometers) high, the lowest altitude prior to June. The next picture below shows Cerealia Facula from another perspective. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / PSI

In a practical sense, Dawn brought two of those jewels down to Earth, or at least brought them more securely within the scope of Earthlings' knowledge. Science and technology together have uncloaked and explained aspects of the universe that would otherwise have seemed entirely inscrutable. Vesta and Ceres revealed little of themselves as they were observed with telescopes for more than two centuries. Throughout that time, they beckoned, waiting for a visitor from distant Earth. Finally their cosmic invitations were answered when Dawn arrived to introduce each of them to Earth, whereupon the two planet-like worlds gave up many of their secrets.

Even now, Ceres continues to do so, as it holds Dawn in its firm but gentle gravitational embrace. Every 27 hours, almost once a day, the orbiting explorer plunges from 2,500 miles (4,000 kilometers) high to as low as about 22 miles (35 kilometers) and then shoots back up again. Each time Dawn races over the alien landscapes, it gathers information to add to the detailed story it has been compiling on the dwarf planet.

Cerealia Facula (perspective view)
Cerealia Facula (perspective view) This perspective on Cerealia Facula was constructed with photographs Dawn took from as low as 22 miles (35 kilometers) combined with the topography determined with stereo pictures Dawn took in 2016 from an altitude of 240 miles (385 kilometers). We saw a 3-D view of this area, albeit with much less detail, hereFull image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / PSI

Dawn began its ambitious mission in 2007. (And on Aug. 17, 2018, it passed a milestone: three Vestan years of being in space.) But the mission is rapidly approaching its conclusion. In the previous Dawn Journal, we began an in-depth discussion of the end, and we continue it here.

We described how the spacecraft will lose the ability to control its orientation, perhaps as soon as September. It will struggle for a short time, but it will be impotent. Unable to point its electricity-generating solar panels at the Sun or its radio antenna to Earth, the seasoned explorer will go silent and will explore no more. Its expedition will be over.

We also took a short look at the long-term fate of the spacecraft. To ensure the integrity of possible future exploration that may focus on the chemistry related to life, planetary protection protocols dictate that Dawn not contact Ceres for at least 20 years. Despite being in an orbit that regularly dips so low, the spaceship will continue to revolve around its gravitational master for at least that long and, with very high confidence, for more than 50 years. The terrestrial materials that compose the probe will not contaminate the alien world before another Earth ship could arrive.

Northwestern edge of Cerealia Facula
Northwestern edge of Cerealia Facula Dawn took this picture of the northwestern edge of Cerealia Facula on July 3 from an altitude of 30 miles (48 kilometers). The scene is 2.9 miles (4.6 kilometers) wide. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Like its human colleagues, Dawn started out on Earth, but now its permanent residence in the solar system, Ceres, is far, far away. Let's bring this cosmic landscape into perspective.

Imagine Earth reduced to the size of a soccer ball. On this scale, the International Space Station would orbit at an altitude of a bit more than one-quarter of an inch (7 millimeters). The moon would be a billiard ball almost 21 feet (6.4 meters) away. The Sun, the conductor of the solar system orchestra, would be 79 feet (24 meters) across at a distance of 1.6 miles (2.6 kilometers). More remote even than that, when Dawn ceases operating, it would be more than 5.5 miles (9.0 kilometers) from the soccer ball. The ship will stay locked in orbit around Ceres, the only dwarf planet in the inner solar system. The largest object between Mars and Jupiter, that distant orb would be five-eighths of an inch (1.6 centimeters) across, about the size of a grape. Of course, a grape has a higher water content than Ceres, but exploring this fascinating world of ice, rock and salt has been so much sweeter!

Now let's take a less terrestrial viewpoint and shift our reference to Ceres. Suppose it were the size of a soccer ball. In Dawn's final, elliptical orbit, which it entered in June, the spacecraft would travel only 37 inches (94 centimeters) away at its farthest point. Then it would go in to skim a mere one-third of an inch (8 millimeters) from the ball.

Domes and fractures south of Cerealia Facula
Domes and fractures south of Cerealia Facula Dawn observed these domes and fractures south of Cerealia Facula on July 3 (and then streaked farther north to take the picture above). The spacecraft was 28 miles (44 kilometers) high when it recorded this scene, which is 2.6 miles (4.2 kilometers) across. The picture is oriented with the sunlight coming from the top, so features light at the top and dark at the bottom are elevated. Depressions, including the craters and fractures, have the opposite lighting. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Dawn is one mission among many to explore the solar system, dating back almost 60 years and (we hope) continuing and even accelerating for much longer into the future. Learning about the cosmos is not a competition but rather a collective effort of humankind to advance our understanding. And to clarify one of the many popular mistaken notions about the solar system, let's take advantage of reducing Ceres to the size of a soccer ball to put some other bodies in perspective.

Because it is in the main asteroid belt, there is a common misconception that Ceres is just another asteroid, somehow like the ones visited by other spacecraft. It is not. The dwarf planet is distinctly unlike the small chunks of rock that are more typical asteroids. We have discussed various aspects of Ceres' complex geology, and much more remains to be gleaned from Dawn's data. Vesta too has a rich and complicated geology, and it is more akin to the terrestrial planets (including Earth) than to asteroids. But for now, let's focus simply on the size in order to make for an easy comparison. Of course, size is not a measure of interest or importance, but it will illustrate how dramatically different these objects are.

Interior of Ceres
Interior of Ceres This artist's concept summarizes the picture scientists have formulated of Ceres' interior structure thanks to Dawn's exploration. Unlike small chunks of rock, including typical asteroids, the dwarf planet is so large and massive that it differentiated, a geological term indicating it separated into distinct layers, with different density and different composition at different depths. It is not yet known whether there is a dense core, like the iron-nickel center of Earth or of Vesta. The green part, the mantle, is principally hydrated rocks, which are minerals that incorporate water (such as clay). The brighter green layer is a sort of transition zone at the top of the mantle, 40 miles (60 kilometers) or more thick. It has not only hydrated rocks but perhaps also briny water, making a sort of mud. Surrounding that is the crust, which is only half the density of the mantle. This outermost layer, going from the surface down to about 25 miles (40 kilometers), consists of a mixture of rock, ice, salt, more hydrated minerals and clathrates. A clathrate is like a molecular cage of water that imprisons a gas molecule. Clathrates are often found on the ocean floor on Earth. They are much stronger than ice at the same temperature and give the crust much greater strength than it would otherwise have. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

With a soccer-ball-sized Ceres, Vesta would be nearly five inches (more than 12 centimeters) in diameter. (This writer's comprehensive knowledge of sports inspires him to describe this as a ball nearly five inches, or more than 12 centimeters, in diameter.)

What about some of the asteroids being explored as Dawn's mission winds to an end? There are two wonderfully exciting missions with major events at asteroids (albeit ones much closer to Earth than the main asteroid belt) in the second half of 2018. Your correspondent, a lifelong space enthusiast, is as hopeful for success as anyone! Hayabusa2 is revealing Ryugu and OSIRIS-REx is on the verge of unveiling Bennu.

Occator Crater's northeastern wall
Occator Crater's northeastern wall Dawn observed this section of Occator Crater's northeastern wall from an altitude of 27 miles (44 kilometers) on June 9. The scene is 2.6 miles (4.2 kilometers) wide. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Ryugu and Bennu are more irregular in shape than Ceres and Vesta, but they would both be so small compared to the soccer ball that their specific shapes wouldn't matter. Ryugu would be less than a hundredth of an inch (a quarter of a millimeter) across. Bennu would be about half that size. They would be like two grains of sand compared to the soccer ball. In the first picture of the June Dawn Journal, we remarked on the detail visible in a feature photographed on one of Dawn's low streaks over the alien terrain. It is also visible in the first two pictures above. That one structure on Ceres is only a part of Cerealia Facula, which is the bright center of the much larger Occator Crater. Occator is a good-sized crater, but not even among the 10 largest on Ceres. Yet that one bright feature in the high-resolution photo is larger than either of these small asteroids. In many of Dawn's pictures that show the entire disk of the dwarf planet (like the rotation movie and the color picture here), Ryugu and Bennu would be less than a pixel, undetectably small, just as invisible specks of dust on a soccer ball.

The tremendous difference in size between Ceres (and Vesta) and small asteroids illustrates a widely unappreciated diversity in the solar system. Of course, that is part of the motivation for continuing to explore. There is a great deal yet to be learned!

Although Ryugu and Bennu aren't in the main asteroid belt, the belt contains many more Lilliputian asteroids closer in size to them than to the Brobdingnagian Ceres and Vesta. In fact, of the millions of objects in the main asteroid belt, Ceres by itself contains 35 percent of the total mass. Vesta has 10 percent of the total.

Readers with perfect memories may note that we used slightly smaller fractions in earlier Dawn Journals. Science advances! More recent estimates of the mass of the asteroid belt are slightly lower, so these percentages are now correspondingly higher. The difference is not significant, but the small increase only emphasizes how different Vesta and Ceres are from typical residents of the asteroid belt. It's also noteworthy -- or, at least, pretty cool -- that Dawn has single-handedly explored 45 percent of the mass between Mars and Jupiter.

Reflective salts in Vinalia Faculae
Reflective salts in Vinalia Faculae Dawn was 29 miles (46 kilometers) high on July 1 when it took this photograph showing the complex distribution of reflective salts in part of Vinalia Faculae. (We saw other views of this bright area east of Cerealia Facula in the previous Dawn Journal.) The scene is 2.7 miles (4.4 kilometers) across. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Dawn will end its mission in the same orbit it is in now, looping around from a fraction of an inch (fraction of a centimeter) to a yard (a meter) from the soccer-ball-sized Ceres. In the previous Dawn Journal, we described what will happen onboard the spacecraft. We also saw that the most likely indication controllers will have that Dawn has run out of hydrazine will be its radio silence. They will take some carefully considered steps to verify that that is the correct conclusion.

But it is certain that emotions will be ahead of rationality. Even as team members are narrowing down the causes for the disappearance of the radio signal, many strong feelings about the end of the mission will arise. And they will be as varied as the people on the Dawn team, every one of whom has worked long and hard to make the mission so successful. Your correspondent can make reasonable guesses about their feelings but won't be so presumptuous as to do so.

As for my own feelings, well, I won't know until it happens, but I'm not too presumptuous to guess now. Long-time readers may recognize that your correspondent has avoided writing anything about himself (with a few rare exceptions), or even using first person, in his Dawn Journals. They are meant to be a record of a mission undertaken by humankind, for everyone who longs for knowledge and for adventures in the cosmos. But now I will devote a few words to my own perspective.

My love affair with the universe began when I was four, and my passion has burned brighter and brighter ever since. I knew when I was a starry-eyed nine-year-old that I wanted to get a Ph.D. in physics and work for NASA, although it was a few more years before I did. I had my own Galileo moment of discovery and awe when I first turned a telescope to the sky. Science and space exploration are part of me. They make me who I am. (My friend Mat Kaplan at The Planetary Society described me in the beginning of this video as "the ultimate space nerd." He's too kind!) Adding to my own understanding and contributing to humankind's knowledge are among my greatest rewards.

Passion and dedication are not the whole story. I recognize how incredibly lucky I am to be doing what I have loved for so long. I am lucky to have had access to the resources I have needed. I am lucky that I was able to do well in my formal education and in my own informal (but extensive) studies. I am lucky I could find the discipline and motivation within myself. For that matter, I am lucky to be able to communicate in terms that appeal to you, dear readers (or, at least, to some of you). My innate abilities and capabilities, and even many acquired ones, are, to a large extent, the product of factors out of my control, like my cognitive and psychological constitution.

That luck has paid off throughout my time at JPL. Working there has been a dream come true for me. It is so cool! I often have what amount to out-of-body experiences. When I am discussing a scientific or engineering point, or when I am explaining a conclusion or decision, sometimes a part of me pulls back and looks at the whole scene. Gosh! Listen to the cool things I get to say! Look at the cool things I get to do! Look at the cool things I know and understand! Imagine the cool spacecraft I'm working with and the cool world it is orbiting! I am still that starry-eyed kid, yet somehow, through luck and coincidence, I am doing the kind of things I love and once could only have dreamed of.

Ridge at the center of Urvara Crater (closeup)
Ridge at the center of Urvara Crater (closeup) Dawn took this picture on July 6 from an altitude of 72 miles (116 kilometers). This ridge is in the center of Urvara Crater. We saw a different section of the ridge, west of this scene (photographed on the previous orbital revolution), in the previous Dawn Journal. (We provided some additional context for this image then as well.) This scene is 5.3 miles (8.6 kilometers) across. Many large craters have a peak in the center. Urvara is more unusual in having a ridge. Note the patterns of bright material that apparently flowed downhill. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Dawn will continue to be exciting to the very end, performing new and valuable observations as it skims incredibly low over the dwarf planet on every orbital revolution. The spacecraft has almost always either been collecting new data or, thanks to the amazing ion propulsion, flying on a blue beam of xenon ions to somewhere else to gain a new perspective, see new sights and make more discoveries. Whether in orbit around Vesta or Ceres or traveling through the solar system between worlds, the mission was rarely anything like routine.

I love working on Dawn (although it was not my first space love). You won't be surprised that I think it is really cool. I could not be happier with its successes. I am not sad it is ending. I am thrilled beyond belief that it achieved so much!

I was very saddened in graduate school when my grandfather died. When I said something about it in my lab to a scientist from Shanghai I was working with, he asked how old my grandfather was. When I said he was 85, the wiser gentleman's smile lit up and he said, "Oh, you should be happy." And immediately I was! Of course I should be happy -- my grandfather had lived a long (and happy) life.

And so has Dawn. It has overcome problems not even imagined when we were designing and building it. It not only exceeded all of its original goals, but it has accomplished ambitious objectives not even conceived of until after it had experienced what could have been mission-ending failures. It has carried me, and uncounted others (including, I hope, you), on a truly amazing and exciting deep-space adventure with spectacular discoveries. Dawn is an extraordinary success by any measure.

It did not come easily. Dawn has consumed a tremendous amount of my life energy, many times at the expense of other desires and interests. (Perhaps ironically, it even comes at the expense of my many other deep interests in space exploration and in science, such as cosmology and particle physics, interests shared by my cats Quark and Lepton. Also, writing these Dawn Journals and doing my other outreach activities take up a very large fraction of what would otherwise be my personal time. As a result, I always write these in haste, and I'm never satisfied with them. That applies to this one as well. But I must rush ahead.) The challenges and the demands have been enormous, sometimes feeling insurmountable. That would not have been my preference, of course, yet it makes the endeavor's successful outcome that much more gratifying.

At the same time I have felt all the pressure, I have long been so overjoyed with the nature of the mission, I will miss it. There is nothing quite like controlling a spacecraft well over a thousand times farther than the Moon, farther even than the Sun. Silly, trite, perhaps even mawkish though it may seem, when spacecraft I have been responsible for have passed on the far side of the Sun, I have taken those opportunities to use that blinding signpost to experience some of the awe of the missions. I block the Sun with my hand and contemplate the significance, both to this particular big, starry-eyed kid and to humankind, of such an alignment. I -- we -- have a spacecraft on the far side of the Sun!

Urvara Crater interior
Urvara Crater interior Dawn was climbing and sailing north after reaching its lowest point above Urvara Crater when it flew 25 miles (41 kilometers) over this bright crater on July 17. The crater is about 1,100 feet (330 meters) across. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

Every day I feel exhilarated knowing that, as my car's license plate frame proclaims, my other vehicle is in the main asteroid belt. It won't be the same when that vehicle is no longer operating.

But I will always have the memories, the thrills, the deep and powerful personal gratification. And I have good reason to believe they will persist, just as some prior space experiences still fill me with gratitude, pride, excitement and pure joy. (I also hope to have many more cool out-of-body experiences.)

And long after I'm gone and forgotten, Dawn’s successes will still be important. Its place in the annals of space exploration will be secure: a wealth of marvelous scientific discoveries, the first spacecraft to orbit an object in the asteroid belt, the first spacecraft to visit a dwarf planet (indeed, the first spacecraft to visit the first dwarf planet that was discovered), the first spacecraft to orbit a dwarf planet, the first spacecraft to orbit any two extraterrestrial destinations, and more.

Urvara Crater's north wall
Urvara Crater's north wall Dawn took this cool picture of Urvara Crater's north wall on July 29 from an altitude of 28 miles (45 kilometers). Note the trails of boulders that tumbled down the wall, including some trails near the lower right that cross each other. At the end of many of the trails, you can see the boulder that left its imprint for Dawn (and you) to see. It appears some boulders are still lodged on the wall, waiting for their triggers so they can create their own trails and come to rest on the crater floor. This scene is 2.7 miles (4.3 kilometers) across. Full image and caption.Image: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA

For now, Dawn is continuing to operate beautifully (and you can read about it in subsequent Dawn Journals). The end of the mission, when it comes, will be bittersweet for me, a time to reflect and rejoice at how fantastically well it has gone, and a time to grieve that it is no more. I will have many powerful and conflicting feelings. Like Walt Whitman, I am large, I contain multitudes.

Thanks to Dawn, we now have Vesta and we now have Ceres. Soon, very soon, Dawn will be only a memory (save for those who visit Ceres and find it still in orbit) but the worlds it revealed will forever be a part of our intellectual universe, and the capabilities to explore the solar system that it advanced and devised will be applied to exciting new missions. And the experience of being intimately involved in this grand adventure will remain with me for as long as I am able to see the night sky and marvel at the mysteries of the universe that captivated me even as a starry-eyed child.

Dawn is 1,500 miles (2,400 kilometers) from Ceres. It is also 3.46 AU (322 million miles, or 518 million kilometers) from Earth, or 1,275 times as far as the Moon and 3.42 times as far as the Sun today. Radio signals, traveling at the universal limit of the speed of light, take 58 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 pm PDT August 22, 2018

Support our core enterprises

Your support powers our mission to explore worlds, find life, and defend Earth. You make all the difference when you make a gift. Give today!

Donate